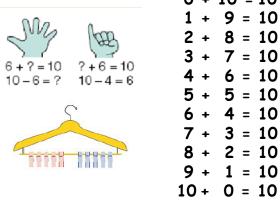

Autumn 1


This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

Five teddies are sitting on a shelf, 1 fell off,

- Use objects to consider the bonds in a practical way.
- Look at the patterns with both objects and numbers e.g. as one number increases the other one decreases.
- Practise with the numbers in order and chosen randomly remember the aim is for the child to be able to respond immediately.

Key vocabulary

Add, Total, How many more to make?, Altogether

Make it real!

There are 5 ladybirds on the leaf. Two fly away, how many are left?

3 ladybirds! How do you know? Well, 2 add 3 make 5.

I have 7p in my purse. How much more do I need to make 10p?

3p! Why? Because 3p and 7p totals 10p

I have 18 cm of ribbon, I cut off 14 cm. How much ribbon is left?

4 centimetres. Are you sure? Yes, because I know that 4 and 14 make 18 altogether.

Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'. Repeat and then convert to numbers i.e. say '2' and they reply '8' (number bonds to 10)

What's hidden?

There are 5 beans on this plate, I hide some under a beaker - how many have I hidden?

Playing cards:

Take out the picture cards from the deck of cards. Include the jokers as 'zero'.

- 1) Play snap by matching the number bonds.
- 2) Play the 'memory game' to find matching number bonds.

Dominoes:

Connect two dominoes to make the bond.

Songs and rhymes

e.g. 5 speckled frogs, 10 in a bed, 10 green bottles

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

Know all the number bonds for each number to 20

Know all number bonds to 100

Know all decimals that total 1 or 10 (1 decimal place)

Know all previous number bonds including decimals

Example of number bonds to 100:

I have a metre of string. I use 67cm to wrap my parcel.

All decimal bonds to 1:

Example of decimal bonds to 10:

6.2 + 3.8 = 10; 6.2 + 3.8 = 10

- Create regular, short opportunities for rapid fire questions where an instant correct answer is required
- Use objects to consider the bonds in a practical way
- Look at the patterns with both objects and numbers e.g. as one number increases the other one decreases
- Practise with the numbers in order and chosen randomly remember the aim is for the child to be able to respond immediately

Key vocabulary

How many more to make? altogether, make, sum, total, how much more is...than..., ...difference between

Make it real!

Jack has £1, he spends 30p. How much change does he get?

70p!
Are you sure?
Yes, the sum of 70p and 30p is
100p - that's £1

A bag of sugar contains 1 kg. If I use 340g how much will I have left?

660 grams! How do you know? The difference between 1000 grams and 660g is 340g.

A litre jug is filled with 0.251 of juice. How much more is needed to make a litre?

0.75 of a litre! How did you work that out? Because a quarter of a litre plus three quarters of a litre equals 1 whole litre.

Remember - a great place to think about capacity is in the bath!

Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'. Repeat and then convert to numbers i.e. say '0.3' and they reply '0.7' (decimal bonds to 1)

What's hidden?

There are 17 beans on this plate, I hide some under a beaker how many have I hidden? (bonds for each number to 20)

Playing cards:

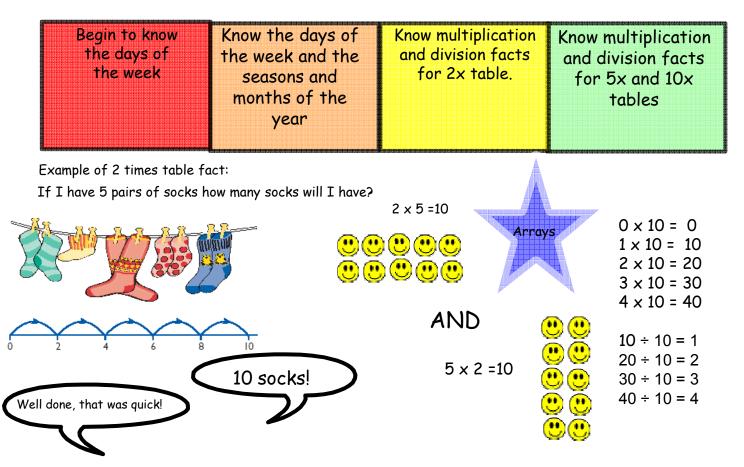
Remove picture cards and the 10s. Play snap treating each card as tenths. When you have a pair which total 1, shout snap and explain why e.g. 0.2 + 0.8 = 1

Dice:

Roll two die treat them as the first as the tens digit and the second as the ones - ask how many more to make 100.

Dominoes:

Pick a domino from a set facing down. Choose one side to represent the whole number and the other side to be the tenth. Ask how much more to make 10.
e.g. picture shows 5.2, so 4.8 more makes 10.


Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

Autumn 2

This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

- Create regular opportunities for rapid fire questions where an instant correct answer is required
- Encourage children to look for patterns, such as all the answers end in 5 or 0 for the 5x table
- Chanting tables really does help. Make it fun by adding actions too or singing!
- Don't forget to chant those division facts too, they are often much harder to recall.

Key vocabulary

times multiplied by lots of groups of multiple of divided by shared double half

Make it real!

How many days are there in a week? Which day comes after Wednesday?

Thursday!
Well done - let's look on the calendar to see what we are doing on Thursday.

There are 2 buns in one row - how many buns will be in three rows?

6 buns!
Great - how do you
know?
Because 3 times 2 is 6.

There are 20 stamps on a sheet. There are 5 stamps in a row, how many rows are there altogether?

4 rows! How did you work that out? Because I know 20 divided by 5 is 4.

Many other things form an array like window panes, milk crates, stickers and wrapping paper!

Make it fun!

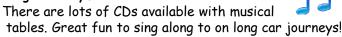
Call out!

Play Fizz Buzz. To practice the 2 and 10 times tables together take it in turns to count in ones. If a number is in the 2x table say 'Fizz' instead of the number. Say 'Buzz' if it's in the 10's and 'Fizz Buzz' if it's in both.

Sequencing

Cut up an old calendar. Ask children to order the months and talk about the seasons.

Playing cards:


Remove picture cards from the pack. Pick a card and state the multiplication and division fact that the child is working on.

eg Pick the '8' card; so $5 \times 8 = 40$ and 40 divided by 5 = 8

Dominoes:

Pick a domino, add the number of dots together then multiply by the table they are working on.

Songs and rhymes

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below.

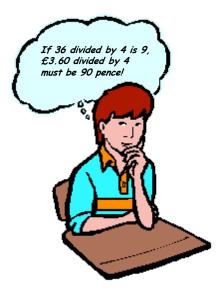
The ultimate aim is for your child to be able to recall these facts instantly!

Know multiplication and division facts for 5x and 10x tables

Know multiplication and division facts for the 7 and 8x tables

Consolidate
multiplication and
division facts for all
times tables

Use all multiplication and division facts for the times tables up to 10×10, to derive x and ÷ of decimals numbers


How many 10 pence pieces make 50 pence?

$$0 \times 7 = 0$$

 $1 \times 7 = 7$
 $2 \times 7 = 14$
 $3 \times 7 = 21$
 $4 \times 7 = 28$

So....

$$7 \div 7 = 1$$

 $14 \div 7 = 2$
 $21 \div 7 = 3$
 $28 \div 7 = 4$

- Create regular opportunities for rapid fire questions where an instant correct answer is required
- Encourage children use what they already know, for example the 6x table is double the 3x table!
- Chanting tables really does help. Make it fun by adding actions too or singing!
- Don't forget to chant those division facts too, they are often much harder to recall.

Key vocabulary times multiplied by lots of groups of multiple of divided by shared product divisible by factor square number

Make it real!

A vending machine is broken and only takes 5p coins. How many coins do you need to pay for a bar of chocolate that costs 45p?

9 coins! How did you work that out? Well, the product of 9 and 5 is 45.

There are 7 smarties on each bun, if we make 6 buns how many smarties will we need?

42 smarties! Can you explain why? 7 lots of 6 are 42.

A piece of ribbon measure 56cm in total. 8 cm are needed to make a bow. How many bows can we make?

7 bows! Can you prove it to me? Well there are seven, eights in 56.

Encourage children to use doubling to work out their 8x table if they already know their 4x table. Equally if you know your 8x table, then the 0.8x table follows the same pattern!

Make it fun!

Call out!

Play Fizz Buzz. To practice the 5 and 8 times tables together take it in turns to count in ones. If a number is in the 5 x table say 'Fizz' instead of the number. Say 'Buzz' if it's in the 8's and 'Fizz Buzz' if it's in both.

What's hidden?

Use a multiplication square, hide some of the facts. Ask your child what is missing and why?

Playing cards:

Remove picture cards from the pack. Pick a card and treat the number as tenths. State the multiplication and division fact that the child is working on.

e.g. Pick the '8' card

so $7 \times 0.8 = 5.6$ and 5.6 divided by 7 is 0.8

Dominoes:

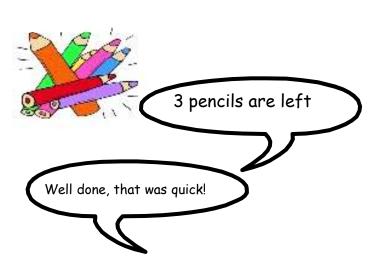
Pick a domino, add the number of dots together then multiply by the table they are working on. To extend to all times tables, pick two dominoes to multiply the total number of dots on each together.

Songs and rhymes

There are lots of CDs available with musical tables. Great fun to sing along to on long car journeys!

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?


Spring 1

This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

Say the numbers in order to 10	Know all number bonds to 10	Know multiplication and division facts for 10x table	Know multiplication and division facts for 2x and 4x table
--------------------------------	--------------------------------	--	--

If there are 10 pencils in the packet and I take 7 out, how many are left?

 $0 \times 10 = 0$ $1 \times 10 = 10$ $2 \times 10 = 20$ $3 \times 10 = 30$ $4 \times 10 = 40$ So... $10 \div 10 = 1$ $20 \div 10 = 2$ $30 \div 10 = 3$ $40 \div 10 = 4$

- · Look at the patterns with both objects and numbers e.g. as one number increases the other one decreases.
- Practise with the numbers in order and chosen randomly the aim is for the child to be able to respond immediately.
- Chanting tables really does help. Make it fun by adding actions too or singing!
- Don't forget to chant those division facts too, they are often much harder to recall.

Key vocabulary

Add

Total

How many more to make?

Altogether

times multiplied by lots of groups of multiple of divided by shared double half

Make it real!

If there are 14 socks in the wash baskets. How many pairs will there be?

7 pairs! How do you know? Double 7 is 14.

For a party we have four 2 litre bottles of pop. How many litres do we have altogether?

8 litres! How do you know? Two multiplied by four is eight.

There are 4 children in the paddling pool, how many toes are there?

40 toes! How come? 4 times 10 is 40.

Six children have 4p each. How much will they have altogether?

24p! How did you work that out? Six lots of four pence is 24p.

Encourage children to use doubling to work out their 4x table if they already know their 2x table. To work out 4x table facts, double and double again!

Make it fun!

Call out!

Use a puppet or favourite teddy to count to 10, making a mistake. Can the child spot the mistake and explain what is wrong - then count along correctly with you.

What's hidden?

Play bunny ears! Parent to hold up 4 fingers to make tears'. Child makes ears with 6 fingers. (bonds to 10)

Playing cards:

Remove picture cards from the pack. Pick a card and state the multiplication and division fact that the child is working on.

e.g. Pick the '8' card; so $4 \times 8 = 32$ and 32 divided by 4 = 8

Dice:

Roll two die, find the total. The child multiplies the total by 2, 4 or 10. Can they also say the associated division fact?

Songs and rhymes

There are lots of CDs available with musical tables. Great fun to sing along to on long car journeys!

Songs to support number bonds to 10 in a bed, 10 green bottles

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

Know multiplication and division facts for 2x and 4x table

Know all 2-digit halves of all two-digit numbers

Know doubles and halves of all two-digit numbers

Know doubles and halves of 2-digit decimals.

If there are 4 wheels on a skateboard, how many wheels will there be on 4 skateboards? What is 1/2 of 0.38? Double $34 \rightarrow 68$ 1/2 of 0.3 =0.15 $35 \rightarrow 70$ $36 \rightarrow 72$ Sixteen wheels! 1/2 of 0.08 = 0.04 Halves So 1/2 of 0.38 must be 0.19! $84 \rightarrow 42$ Well done, that was quick! $85 \rightarrow 42 \frac{1}{2} \text{ or } 42.5$ $86 \rightarrow 43$

- Create regular opportunities for rapid fire questions where an instant correct answer is required
- Encourage children to use what they already know, for example the 6x table is double the 3x table!
- When children are confident with doubles ask them to find the corresponding halves
- Practise halving at least as often as doubling. This will help children with subtraction at a later date

Key vocabulary

multiply product times by lots of share group divide double near double twice 2 lots of 2 times half halved divided by 2 shared between 2 group in pairs

Make it real!

A piece of ribbon measuring 63 cm is cut from a piece which is a metre long. How much ribbon is left?

37cm!
Can you tell me why?
I know 63 and 37 make 100 - there are 100cm in a metre

Two tickets cost £67, how much would one ticket cost?

£33.50 How do you know? I know because half of 60 is 30 and half of 7 is 3.5

The swimming pool is 3.7km away. How far will we travel there and back?

7.4km
Can you explain?
Well, double 3 is 6 and double 0.7 is 1.4 which makes 7.4 altogether

If children are finding decimals tricky relating questions to money makes it much easier to understand.

Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'. Repeat and then convert to numbers i.e. say 3.9' and they reply '7.8' (double 2 digit decimal) Or say, '7.8' and they say '3.9'

Money:

Show children a set of coins, children work out the value of the coins and say how much more is needed to make a pound.

Playing cards:

Remove picture cards from the pack. Pick a card, state the multiplication and division fact that the child is working on.

e.g. Pick the '8' card so 4 x 8 = 32 and 32 divided by 4 is 8

Dominoes:

Pick a domino

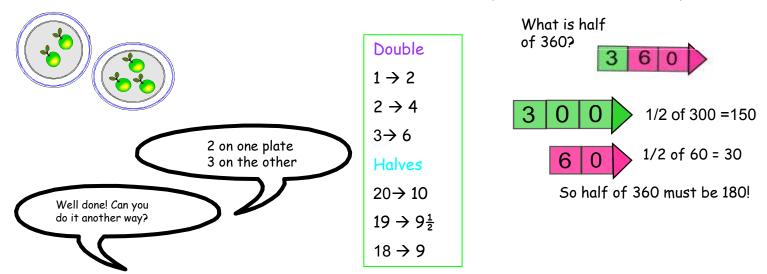
This domino could represent 0.52 or 5.2 or 52. Use any of these numbers to double or halve

Songs and rhymes

As well as commercial CDs children enjoy inventing their own clapping games and chants linked to the times tables

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?


Spring 2

This half term your child is working towards achieving their individual KIRF target, indicated below.

The ultimate aim is for your child to be able to recall these facts instantly!

If I have 5 apples and two plates how many apples can I put on each plate?

Example of doubles and halves of multiples of 100:

- When children are confident with doubles ask them to find the corresponding halves
- Practise halving at least as often as doubling. This will help children with subtraction at a later date

Key vocabulary

Double near double twice 2 lots of 2 times half halved divided by 2 shared between 2 group in pairs

Make it real!

How many different ways can you share 5p between 2 people?
Repeat for 4p, 3p etc Op +5p

Op +5p 1p +4p etc 5p

If there are 10 shoes. How many dolls can have a pair of shoes?

5 dolls! Can you tell me why? Because double 5 is 10.

A TV programme lasts for 40minutes. The next programme lasts for twice as long. How many minutes does this one last for?

80 minutes! How do you know? Because 40 minutes plus 40 minutes is 80 minutes, which is also 1 hour 20 minutes.

A bag of potatoes weighs 4 600g. What would half a bag weigh?

2 300g!
Are you sure?
Because half of 4 600g is 2 300g.

Encourage children to partition the numbers when doubling and halving 2- or 3-digit numbers e.g. 1/2 of 240 is 1/2 of 200 and then 1/2 of 40

Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'. Repeat and then convert to numbers i.e. say '12' and they reply '24' (doubles to 20) Or say, '36' and they say '18'

Playing darts

Use a magnetic dartboard. Create a game involving doubling and halving. To extend change the numbers to multiples of 10 e.g. 13 becomes 130

Dominoes:

Pick a domino

This domino could represent 52 or 520 or 5 200. Use any of these numbers to double or halve

Challenge!

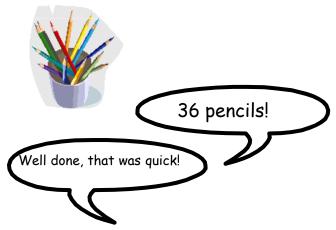
Start with any single digit number. Keep doubling. How far can you get? Can you get back to the beginning again?

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below. The ultimate aim is for your child to be able to recall these facts instantly!

Know doubles and halves of: All whole numbers to All multiples of 10 to 500 All multiples of 100 to 5000

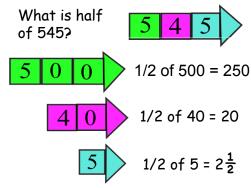

Know doubles and halves of: All whole numbers to 50 All multiples of 5 to 1000 All multiples of 50 to 5000.

Know doubles and halves of: All whole numbers to 100 All multiples of 10 to 1000 All multiples of 100 to 10,000.

Know the doubles and halves of all multiples of 10 to 10000

If there are 18 pencils in a pack, how many pencils will there be in 2 packs?

Example of doubles and halves of multiples of 5 to 1000:



Doubles:

 $25 \rightarrow 50$, so 250 → 500 $37 \rightarrow 74$, so $370 \to 740$

Halves:

 $70 \rightarrow 35$, so 700 **→** 350 $43 \rightarrow 21.5$, so 430 → 215

So half of 545 must be $272\frac{1}{2}$ or 272.5

Spring 2b

- When children are confident with doubles ask them to find the corresponding halves
- Practise halving at least as often as doubling. This will help children with subtraction at a later date
- Children will often find numbers such as 35 harder to halve, so practise halving these numbers more often, encourage your child to give the answer using a fraction (17 $\frac{1}{2}$) and/or a decimal (17.5)

Key vocabulary

Double near double twice 2 lots of 2 times half halved divided by 2 shared between 2 aroup in pairs

Make it real!

In a sponsored swim, Paul swam 75 lengths of the pool, his sister swam twice as far. How many lengths did she swim?

150 lengths
Can you tell me why?
Because double 75 is 150.

If two children have £27 to share equally between them, how much do they have each?

£13.50 each!
How do you know?
Because half of £20 is £10 and half of £7 is £3.50 which is £13.50 altogether!

Jenny walks 1250 metres to school each day, she meets Kate half way; how far does Kate walk?

625 metres!
Tell me how you worked it out.
Well, I know that half of 1200 metres is 600 metres
and half of 50 metres is 25 metres.

Encourage children to partition the numbers when doubling and halving 2- or 3-digit numbers e.g. 1/2 of 240 is 1/2 of 200 and then 1/2 of 40

Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'. Repeat and then convert to numbers i.e. say '12' and they reply '24' (doubles to 20) Or say, '36' and they say '18'

Playing cards:

Pick 3 cards, the first one to represent the thousands, the second one to represent the hundreds and the third one to represent the tens, so that your number is always a multiple of 10. How quickly can you double AND halve this number?

E.g. Cards show 8150

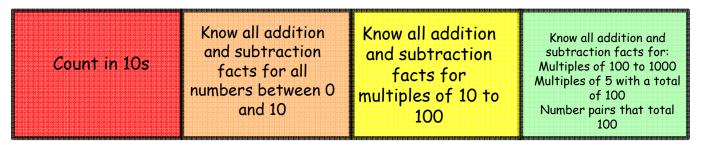
Playing darts

Use a magnetic dartboard. Create a game involving doubling and halving. To extend, change the numbers to multiples of 10 e.g. 13 becomes 130

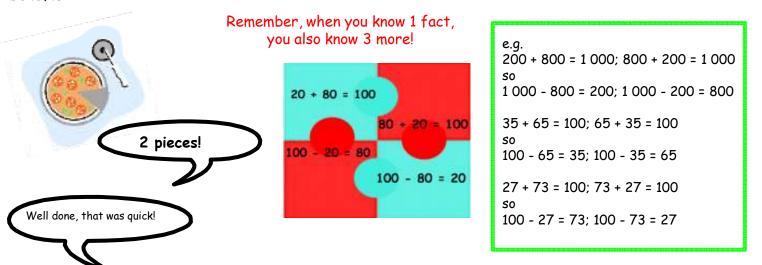
Top Trump Cards:

Pick a Top Trump card. Choose any category and see how quickly you can halve AND double this number.

Challenge;


Choose any even 4 digit number, halve it: if the answer is even halve again, if it's odd add 1 then halve again. How far can you go?

Timed Games:


How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

Summer 1

This half term your child is working towards achieving their individual KIRF target, indicated below. The ultimate aim is for your child to be able to recall these facts instantly!

If we cut the pizza into 6 pieces and we eat 4 how many pieces will be left?

- Remember to count backwards at least as many times as forwards as this is what children find most difficult
- Remind children that if they know 6 + 3 = 9 they also know that 3 + 6 = 9, 60 + 30 = 90 and that 600 + 300 = 900
- List pairs of numbers. Jot the opposite statements alongside e.g. 17 + 13 = 30 13 + 17 = 30

Key vocabulary

How many more to make? altogether make sum total add how much more is...than ...? ... difference between

Make it real!

We have eaten 3 ice lollies and there are 5 left ir the box. How many were in the box to start with?

8 lollies! How do you know? I know because 3 plus 5 makes 8!

We invited 30 children to the party but 4 children can't come. How many children will be at the party?

26 children! Why? Because 30 take away 4 is 26!

If I put 65 pence into the piggy bank, how much more do I need to make a pound?

35 pence!
How did you work that out?
Well I know that 35 and 65 make 100 and there are 100 pennies in a pound!

There are 100 pages in my book. If I have read 66 pages, how many more do I need to read?

34 pages Why? Because 66 plus 34 makes 100!

Make it fun!

Call out!

Tap a number of regular beats. Ask

the child to count silently in tens, calling out the number you stop on.

What's Hidden?

Have a bag of twenty 5 pence pieces. The child can select a random number and quickly call out the change from a pound which is hidden in the bag.

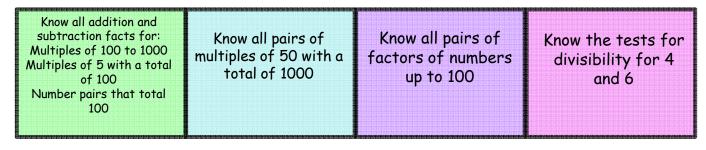
Playing cards:

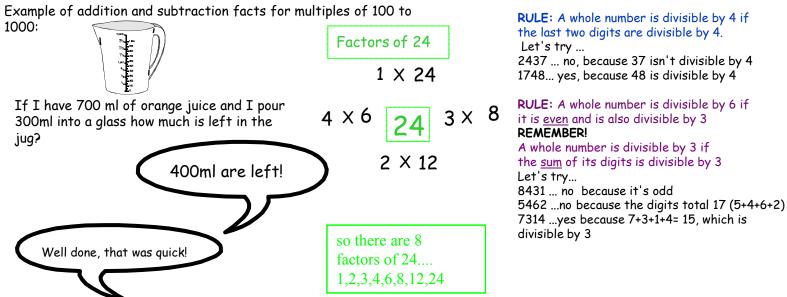
Remove the picture cards from the pack. Pick 2 cards and use one to represent the tens and the other to represent the unit.

e.g. pick '3' card and '6' card making the number 36

Ask the child to find another pair to make the total a multiple of 10 such as 90, 80, 70 etc

Dominoes:


Pick a domino from a set facing down. Choose one end to represent the tens and the other to be the unit. Ask how much more is needed to make 60, 70, 80 etc.


e.g. picture shows 52 - so answer would be 8, 18, 28

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below. The ultimate aim is for your child to be able to recall these facts instantly!

- List pairs of numbers
- Jot the opposite statements alongside e.g. 850 + 150 150 + 850
- Practise with the numbers in order and chosen randomly remember the aim is for the child to be able to respond immediately.

Key vocabulary

How many more to make..?, altogether, make, sum, total, how much more is...than..., ...difference between Divisible by, factor, shared, divided by, groups of

Make it real!

A packet of popcorn cost 74p. How much change will I have from a pound?

26p! Why?

The difference between 74 and 100 is 26.

Dad measures 350g of sugar from a kilogram bag of sugar to bake a cake. How much sugar is

left in the bag?

650g! How do you know? Because twice 350 and 650 total 1000.

A farmer has 126 eggs and puts them into boxes of 6. Will there be any eggs left over?

Yes!

Are you sure?

Yes, because it is even and the sum of the digits is in the three times table

A baker cooks a batch of 245 muffins and puts them into packs of 4. Will there be any left on the tray?

Yes!

Can you explain?

45 is not divisible by 4, so neither is 245

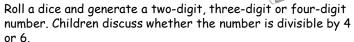
Make it fun!

Call out!

Play number ping pong! Start of saying 'ping', child replies with 'pong'.

Repeat and then convert to numbers i.e. say '73' and they reply '27' (number pairs that total 100) or '550' and they reply '450'.

What's hidden?

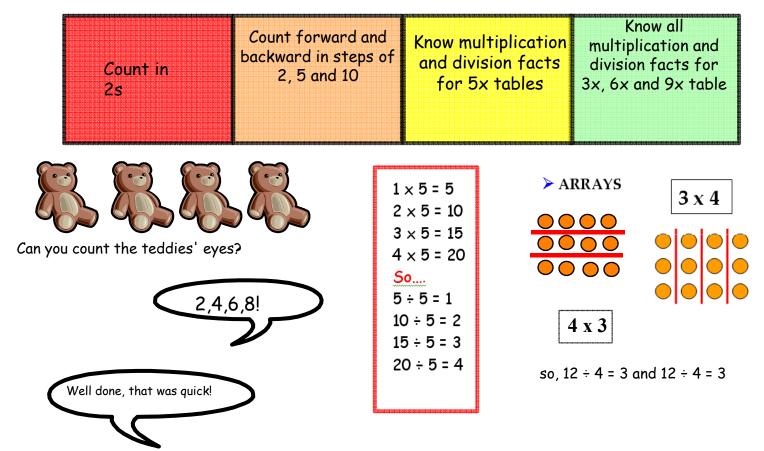

Have a bag of twenty 5p pieces - child can select a random number and quickly call out the change from a pound which is hidden in the bag.

Cards:

Make cards with multiples of 50 on them (e.g. 50, 100, 150 etc) •child can select one at random a quickly calls out how many more are needed to make 1000

•ask children to sort them into pairs that total 1000 - how quickly can they do it? Can they beat their last time?

Dice:



Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

Summer 2

This half term your child is working towards achieving their individual KIRF target, indicated below. The ultimate aim is for your child to be able to recall these facts instantly!

- Encourage children to use doubling to work out their 6x table if they already know their 3x table.
- Remember to count backwards at least as many times as forwards as this is what children find most difficult
- Chanting tables really does help. Make it fun by adding actions too or singing!
- Don't forget to chant those division facts too, they are often much harder to recall

Key vocabulary

add total how many more to make? altogether

multiplied by lots of groups of

multiple of divided by shared

double

half

Make it real!

There are seven 5p coins in my purse. How much is there all together?

> How do you know? Because seven fives are 35.

A tent sleeps three. How many tents will you need for 18 children?

Can you explain why? There are 6 groups of 3 in 18.

Six beans are planted in each pot. There are 8 pots, how many beans will be needed?

Are you sure? Yes, because 6 times 8 equals 48.

There are some interesting patterns in the $9 \times$ table. Look at the answers to the multiplications in the 9 times table. The digit sum is always 9! e.a. 36 ... 3 + 6 = 9

Make it fun!

Call out!

Use a puppet or favourite teddy to count in 2s, making a mistake. Can the child spot the mistake and explain what is wrong - then count along correctly with you.

Dominoes?

Pick a domino and add the dots. The child multiplies the total by 5, 3, 6 or 9. Can they also give the associated division fact?

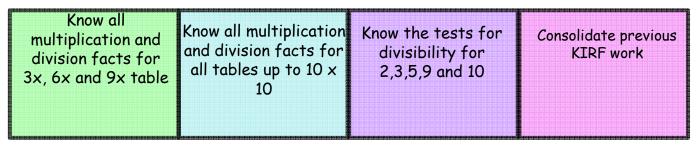
Playing cards:

Remove picture cards from the pack. Pick a card and state the multiplication and division fact that the child is working on.

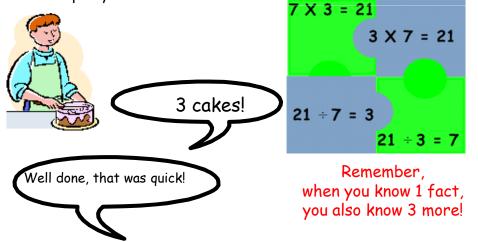
e.g. Pick the '8' card; so $5 \times 8 = 40$ and 40 divided by 5 = 8

Dice:

Roll two die, find the total. The child multiplies the total by 5, 3, 6 or 9. Can they also say the associated division fact?


Songs and rhymes

There are lots of CDs available with musical tables. Great fun to sing along to on long car journeys!


Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?

This half term your child is working towards achieving their individual KIRF target, indicated below. The ultimate aim is for your child to be able to recall these facts instantly!

If you can cut a cake into 6 slices, how many cakes would you need to buy if there were 18 people coming to the party?

RULE: A whole number is divisible by 2 if the last digit is 0, 2, 4 6 or 8. RULE: A whole number is divisible by 3 if the sum of its digits is divisible by 3 Let's try! 7314 ...yes because 7+3+1+4= 15, which is divisible by 3 RULE: A whole number is divisible by 5 if the last digit is 0 or 5 RULE: A whole number is divisible by 9 if the sum of its digits is divisible by 9 Let's try ... 437 ... no, because 4 + 3 + 7 = 14 which isn't divisible 738... yes, because 7 + 3 + 8 = 18 which is divisible by RULE: A whole number is divisible by 10 if the last digit is 0

Summer 2b

- Encourage children to use doubling to link tables such as 2s, 4s, and 8s
- Look for patterns in the tables, for example in the 9 times table the digit sum is always 9!
- Chanting tables really does help. Make it fun by adding actions too or singing!
- Don't forget to chant those division facts too, they are often much harder to recall

Key vocabulary times multiplied by lots of groups of multiple of divided by shared product divisible by factor square number quotient

Make it real!

A back yard is 8 metres long and 4 metres wide. What is the total area?

32 metres squared! How do you know? Because 4 multiplied by 8 is 32.

A recipe for a cake requires three tablespoons of honey. If I make 6 cakes for a school fete, how many tablespoons will I need?

18 tablespoons! Why? The product of 3 and 6 is 18.

We go on holiday in 7 weeks time. How many days are left until we go? How many school days are left?

49 days and 35 school days!
Why?
There are 7 days in a week so 7 times 7 is 49.
We only go to school for 5 days, so five seven's are 35.

Remember to work out a tricky multiplucation use what you already know! So to work out 6×8 :
"we might know $6 \times 4 = 24$ and then double it to make 48"

Make it fun!

Call out!

Play 'Beat the calculator'. One person works out the answer to a multiplication or division question (similar to those above) with a calculator and one person works them out in their head. Who is the quicker?

Dice?

Roll a dice and generate a two-digit, three-digit or four-digit number. Children discuss whether the number

is divisible by 2, 3, 5, 9 or 10.

Playing cards:

Remove picture cards from the pack. Pick a card and state the multiplication and division fact that the child is working on.

eg Pick the '9' card; so $9 \times 7 = 63$ and 63 divided by 7 = 9

Dominoes:

To practice the 8 times table, for example, pick a domino and add the dots. The child multiplies the total by 8. The child should also give the associated division fact.

Songs and rhymes

There are lots of CDs available with musical tables. Great fun to sing along to on long car journeys!

Timed Games:

How well are you doing? How many questions can you answer in 2 minutes. Can you beat your own record?